Preparing Your Data For Cloud

IndicThreads.com Conference On Upcoming Technology

1

Agenda

- Relational DBMS's: Pros & Cons
- Non-Relational DBMS's: Pros & Cons
- Types of Non-Relational DBMS's
- Current Market State
- Applicability of Different Data-Bases in different environments

India

Pune

Relational DBMS - Pros

- Data Integrity
- ACID Capabilities
- High Level Query Model
- Data Normalization
- Data Independence

Relational DBMS - Cons

- Scaling Issues
 - By Duplication (Master-Slave)
 - By Sharding/Division (Not transparent)
- Fixed Schema
- Mostly disk-oriented (Performance)
- May fair poorly with large data

Non-Relational DBMS - Pros

- Scalability
- Replication / Availability
- Performance
- Deployment Flexibility
- Modelling Flexibility
- Faster Development (?)

Non-Relational DBMS - Cons

- Lack of Transactional Support
- Data Integrity is Application's responsibility
- Data Duplication / Application Dependent
- Eventually Consistent (mostly)
- No Standardization
- New Technology

RDBMS's and Cloud

Cloud Capable RDBMS

Almost every RDBMS can run in a IAAS Cloud Platform

Cloud Native RDBMS

Types of Non-Relational DBMS

- Key Value Stores
- Document Stores

Column Stores

Graph Stores

Key Value Data-Bases

- Object is completely Opaque to DB
- Mostly GET, PUT & DELETE operations are supported
- There may be limits on size of Objects

Inspired by Amazon Dynamo Paper

Key Value DataBases & Cloud

Project Voldemort

MemCachedDB

Tokyo Tyrant

Document Data-Bases

- Object is not completely opaque to DB
- Every Object has it's own schema

```
FirstName="Bob", Address="5 Oak St.", Hobby="sailing".

FirstName="Jonathan", Children=("Michael, 10", "Jennifer, 8")
```

- Can perform queries based on Object's attributes
- Possible to describe relationships between Objects
- Joins and Transactions are not supported
- Good for XML or JSON objects

Document Data-Bases & Cloud

Amazon SimpleDB™ BETA

Column-Store Data-Bases

- Richer than Document Stores
- Multi-Dimensional Map
 - Tables
 - Row
 - Column
 - Time-Stamp
- Supports Multiple Data Types
- Usually use an Underlying DFS
 Inspired by Google Big Table Paper

Column-Store Data-Bases & Cloud

Key Factors while Making a Choice

- Application Architecture Requirements
- Platform choices
- Non-Functional Requirements
 - Consistency
 - Availability
 - Partition
 - Security
 - Data Redemption

Different Requirements = Different Solutions

- Feature First
 - Corporate Data
 - Consistency Requirements
 - Business Intelligence
 - Legacy Application

RDBMS on Amazon Cloud, RackSpace (IaaS) or Microsoft Azure/Amazon RDS (PaaS)

- Consumer Facing Application
 - Big Files (Images, BLOB's, Files)
 - Geographically Distributed
 - Mostly writes
 - Not heavy requirement on Rich Queries

Key-Value Data Stores (Amazon S3, Project Voldemort, Redis)

- Hundreds Of Government Documents with different schemas
 - Need to serve on Web
 - Data Mining

Document Data-Stores (Amazon SimpleDB, Apache Couche DB, MongoDB)

- Scale First
 - Huge Data-Set
 - Analytical Requirements
 - Consumer Facing
 - High Availability over Consistency

Column Data-Stores (Google App Engine, Hbase, Cassandra)

Mix & Match of Earlier Scenarios

Polyglot Persistence

- RDBMS for low-volume and high value
- Key-Value DB for large files with little queries
- Memcached DB for shortlived Data
- Column DB for Analytics

CAP Theorem

Conclusions

One Size does not Fit all

- Many choices
- No-SQL DB's providing Alternatives
- RDBMS serve useful purpose

inphina

nkumar@inphina.com

www.inphina.com http://thoughts.inphina.com

References

- http://nosql-database.org/
- http://www.drdobbs.com/database/218900502
- http://perspectives.mvdirona.com/2009/11/03/OneSizeDoesNotFitAll.aspx
- http://blog.nahurst.com/visual-guide-to-nosql-systems
- http://blog.heroku.com/archives/2010/7/20/nosql/
- http://www.vineetgupta.com/2010/01/nosql-databases-part-1-landscape.html
- http://project-voldemort.com/
- http://code.google.com/p/redis/
- http://memcachedb.org/
- http://aws.amazon.com/simpledb/
- http://couchdb.apache.org/
- http://www.mongodb.org
- http://riak.basho.com/